

Types of Chemical Reactions

How can you tell if a chemical reaction occurred?

ARE THERE ANY CHARACTERISTICS YOU MIGHT OBSERVE?

- GAS FORMED
- LIGHT PRODUCDD
- EXPLOSION
- TEMPERATURE CHANGPD
- NEW ODOR PRODUCED
- PRECIPITATE FORMED
- COLOR CHANGE

INDICATORS

OF A
CHPMICAL
REACTION

Types of Reactions

- There are five types of chemical reactions we will use: 1.Synthesis reactions
2.Decomposition reactions
3.Single displacement reactions
4.Double displacement reactions

5. Combustion reactions

1. Synthesis reactions

DESCRIPTION:

- Synthesis reactions occur when two simple substances combine and form a single compound

$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB}$

1. Synthesis reactions

GENERAL FORMULA:

- reactant + reactant \rightarrow product - $A+B \rightarrow A B$

Forming water

DKAMPLES:

- FORMATION OF WATER
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
- FORMATION OF CARBON DIOXIDE

$$
\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}
$$

1. Decomposition reactions

DESCRIPTION:

- Decomposition reactions are opposite of synthesis reactions. They occur when a compound breaks up into simpler compounds

2. Decomposition reactions

GPNERAL FORMULA:

- Product \rightarrow reactant + reactant $\cdot \mathbf{A B} \rightarrow \mathbf{A}+\mathbf{B}$

Decomposition Reactions

EXAMPLES:

- DECOMP OF WATER $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
- DECOMP OF HgO $2 \mathrm{HgO} \rightarrow \mathbf{2 H g}+\mathrm{O}_{2}$

The opposite of a Synthesis reactions

3. Single Replacement Reactions

DESCRIPTION:

- Single Replacement Reactions occur when one element replaces another in a compound

2. Single Replacement reactions

GDNPRAL FORMULA: DKAMPLDS:

- element + compound \rightarrow compound + element
$-\mathrm{Fe}+\mathrm{CuSO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{Cu}$
$\cdot \mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
- $A+B C \rightarrow A C+B$
- $\mathbf{A}+\mathrm{BC} \rightarrow \mathrm{BA}+\mathbf{C}$

4. Double Replacement Reactions

- DESCRIPTION:

Double Replacement Reactions occur when a metal replaces a metal in a compound and a nonmetal replaces a nonmetal in a compound forming two NEW COMPOUNDS

4. Double Replacement Reactions

GENPRAL FORMULA:

- compound + compound \rightarrow compound + compound
- $\underline{A B+C D} \rightarrow A D+C B$

EXAMPLES:

- Think about it like "foil"ing in algebra
- Examples:

```
AgNO
```

$\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{KNO}_{3}+\mathrm{BaSO}_{4}$

5. Combustion Reactions

- DESCRIPTION:

Combustion reactions occur when a hydrocarbon reacts with oxygen gas to produce carbon dioxide and water

5. Combustion Reactions

GDNERAL FORMULA: EXAMPLES:

- Basically:
 $\mathrm{C}_{5} \mathrm{H}_{12}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{C}_{10} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Identifying Chemical Reactions

Use colored pencils to circle the common atoms or compounds in each equation to help you determine the type of reaction it illustrates. Use the code below to classify each reaction.

$$
\text { S = Synthesis } \quad D=\text { Decomposition } \quad \text { SR }=\text { Single Replacement } \quad D R=\text { Double Replacement }
$$

SYNTHESIS
Compare to your notes

SYNTHESIS

Pair Share Activity

Classify the following types of reactions:

1) $\mathrm{NaOH}+\mathrm{KNO}_{3}$--> $\mathrm{NaNO}_{3}+\mathrm{KOH}$ double displacemient
2) $\mathrm{CH}_{4}+2 \mathrm{O}_{2}--\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ combustion
3) $2 \mathrm{Fe}+6 \mathrm{NaBr}-->2 \mathrm{FeBr}_{3}+6 \mathrm{Na}$ single displacbment
4) $\mathrm{CaSO}_{4}+\mathrm{Mg}(\mathrm{OH})_{2}--\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{MgSO}_{4}$ double dis.
5) $\mathrm{Pb}+\mathrm{O}_{2}$--> PbO_{2} SYnthesis
6) $\mathrm{Na}_{2} \mathrm{CO}_{3}$--> $\mathrm{Na}_{2} \mathrm{O}+\mathrm{CO}_{2} \quad$ DECOMPOSITION

Naming Organic Compounds

- Organic compounds contain carbon and have a different system.
- The simplest group of organic compounds it the hydrocarbons which contain carbon and hvdrogen
- The "stem" of the name is determined by the number of carbon atoms The ending of the names is the same and will be -ane.
- Compounds can be written using structural formulas
- Hydrocarbons can also come in ring shaped structures. The name "cyclo" must be added before the "stem"

CH_{4}	1	Meth	-ane	Methane
$\mathrm{C}_{2} \mathrm{H}_{6}$	2	Eth	ane	Bthane
$\mathrm{C}_{3} \mathrm{H}_{8}$	3	Prop	ane	Propane
$\mathrm{C}_{4} \mathrm{H}_{10}$	4	But	ane	Butane
$\mathrm{C}_{5} \mathrm{H}_{12}$	5	Pent	ane	Pentane
$\mathrm{C}_{6} \mathrm{H}_{14}$	6	Hex	ane	Hexane
$\mathrm{C}_{7} \mathrm{H}_{16}$	7	Hept	ane	Heptane
$\mathrm{C}_{8} \mathrm{H}_{18}$	8	Oct	ane	Octane
$\mathrm{C}_{9} \mathrm{H}_{20}$	9	Non	ane	Nonane
$\mathrm{C}_{10} \mathrm{H}_{22}$	10	Dec	ane	Decane

Examples

$\mathrm{C}_{5} \mathrm{H}_{12}$
PENTANE

$\mathrm{C}_{3} \mathrm{H}_{8}$
PROPANE

$\mathrm{C}_{3} \mathrm{H}_{6}$
CYCLOPROPANE

